射頻識別技術是一種非接觸的自動識別技術。它是由電子標簽(Tag/Transponder)、讀寫器(Reader/Interrogator)及中間件(Middle-Ware)~部分組成的一種短距離無線通信系統。射頻識別中的標簽是射頻識別標簽芯片和標簽天線的結合體。標簽根據其工作模式不同而分為主動標簽和被動標簽。主動標簽自身攜帶電池為其提供讀寫器通信所需的能量:被動標簽則采用感應耦合或反向散射工作模式,即通過標簽天線從讀寫器中發出的電磁場或者電磁波獲得能量激活芯片,并調節射頻識別標簽芯片與標簽天線的匹配程度,將儲存在標簽芯片中的信息反饋給讀寫器。因此。射頻識別標簽天線的阻抗必須與標簽芯片的輸入阻抗共軛匹配,以使得標簽芯片能夠最大限度地獲得射頻識別讀寫器所發出的電磁能量。此外,標簽天線設計時還必須考慮電子標簽所應用的場合,如應用在金屬物體表面的標簽天線和應用在普通物體表面的標簽天線在天線的結構和選材上存有很大的差別。適合于多種芯片、低成本、多用途的標簽天線是射頻識別在我國得到廣泛普及的關鍵技術之一。
射頻識別系統與天線分類
對于采用被動式標簽的射頻識別系統而言,根據工作頻段的不同具有兩種工作模式。一種是感應耦合(Induc.tiveCoupling)T作模式,這種模式也稱為近場工作模式,它主要適用用于低頻和高頻RFID系統:另一種則是反向散射(Backscattering)32作模式,這種模式也稱為遠場T作模式,主要適用于超高頻和微波RFID系統。
感應耦合模式主要是指讀寫器天線和標簽天線都采用線圈形式。當讀寫器在閱讀標簽時,發出未經調制的信號。處于讀寫器天線近場的電子標簽天線接收到該信號并激活標簽芯片之后,由標簽芯片根據內部存儲的全球唯一的識別號(ID)控制標簽天線中的電流大小。這個電流的大小進一步增強或者減小閱讀器天線發出的磁場。這時,讀寫器的近場分量展現出被調制的特性,讀寫器內部電路檢鋇0到這個由于標簽而產生的調制量并解調并得到標簽信息。
在反向散射T作模式中,讀寫器和電子標簽之間采用電磁波來進行信息的傳輸。當讀寫器對標簽進行閱讀識別時,首先發出未經調制的電磁波,此時位于遠場的電子標簽天線接收到電磁波信號并在天線上產生感應電壓,電子標簽內部電路將這個感應電壓進行整流并放大用于激活標簽芯片。當標簽芯片激活之后,用自身的全球唯一標識號對標簽芯片阻抗進行變化,當電子標簽芯片的阻抗和標簽芯片之間的阻抗匹配較好時則基本不反射信號,而阻抗匹配不好時則將幾乎全部反射信號。這樣反射信號就出現了振幅的變化,這種情況類似于對反射信號進行幅度調制處理。讀寫器通過接收到經過調制的反射信號判斷該電子標簽的標識號并進行識別。這類天線主要包括微帶天線、平面偶極子天線和環形天線。圖二是我們研制的能工作于多種識別環境下的UHF電子標簽天線。